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Abstract — An analytical method for determining the Maxwell’s capaci-

tance matrix of multiconductor coupled stripline-like microstrip lines in an

inhomogeneous medium is presented. The method is based on conformal

mapping and the theory of singular integral equations.

I. INTRODUCTION

R ECENTLY the study of multiconductor coupled

stripline-like rnicrostrip lines has attracted consider-

able interest due to the favorable properties of these lines

for developing new microwave integrated circuits such as

directional couplers and parallel coupled filters. In con-

trast to the so-called microstrip line classical half-shielded

structure, the full-shielded structure referred to as strip-

line-lilce microstrip [1] offers the advantage of having the

mode velocities independent of the strip widths and spac-

ing, and as a consequence a very good directivity and

well-defined electrical behavior.

For multiconductor coupled structures with very tight

coupling (interdigitated directional couplers, high-order

parallel coupled line filters) an accurate calculation method

is required in order to estimate the influence of all the

conducting strips. A number of methods to perform this

analysis are currently used; all of them solve the Laplace

equation for the bidimensional electrostatic equivalent

problem for low-order, quasi-TEM modes. One can men-

tion several commonly used methods, such as conformal

mapping for simple symmetrical cases [2], numerical meth-

ods based on lattice approximations [3], variational meth-

ods [4], and methods based on solving the integral equa-

tions derived from Green’s functions [5]–[7]. Although

some of the numerical methods are quite general, none of

the above can be considered suitable for analysis and

especially for synthesis of all the high-performance struc-

tures.

The present paper presents a new analytical method for

determining Maxwell’s capacitance matrix for multicon-

ductor stripline-like microstrips with coupled conductors

with arbitrary widths and spacings and inhomogeneous

media. It appears that the more general case of unsymmet-

rical configurations cannot be solved by a similar method.
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II. BASIC CONFIGURATION

The multiconductor system to be analyzed consists of n
zero-thickness conducting strips A ~B~, with arbitrary

widths and spacings, located on a dielectric substrate of

thickness h. The system is fully shielded by ground planes

on all sides, as shown in Fig. 1, and is subject to the

constraint that the shield spacing 1 equals the substrate

thickness h. However the relative dielectric constants c1

and t ~ corresponding to the upper and lower dielectric

media may be different.

The electrostatic field E( Ey, EY) in the two dielectric

media inside the shielded box can be expressed by means

of electrostatic potentials as

.EJJ)(X, y) = – dl)(J)/ilx

E;J)(x, y) = – d#J)/ay, j=l,2. (1)

As ~(~)(x, y) are harmonic functions, we can introduce

the harmonic conjugate functions p(~)(x, y)—the field

functions. Therefore, the complex potential functions

f(~)(,z) =rf(~)(x, y)+i. $(~)(x,.v), j=l,2 (2)

are homomorphic in the complex variable z = x + i. y inside

the two dielectric media.

On the shielded box the potential functions must vanish,

i.e.,

+(’)(x,y)=o

+(’)(x,y)=o

On the other hand on

the physical conditions

fory>O

for y <O, on the box. (3)

the symmetry axis we must have

Dy(x, +o)–lly(x. -o)=p(x) (4a)

Ex(x, +O)– EX(X, –o) =0 (4b)

where p(x) is the surface density of the electrical charges

and D( DX, DY) is the electrical induction.
On the insulating segments B~A ~~ ~ we must have

p(x) = O; by using the field function the relation (4a) gives

(l~(x, o)+c2. q(2)(x, o) = –q~,—E1. rp

x ~ B@k~l, k=l,. ... n (5)

where qk are unknown constants. Relation (4b) gives also

*(’)(x*o) = +(’)(X,O). (6)
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Fig. 1. Full-shielded multiconductor coupled striplines.
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Fig. 2. The canonic domain obtained by conformal mapping of the
domain in Fig. 1.

On the conducting strip AkBk we must have

Ij(’)(x,o) = rf’)(x,o) =V,,

k=l,. ”., n, x = A~B~ (7)

where V~ is the potential of the k th electrode. Relation

(4a) determines in this case the function p(x). The total

charge Q~ on the strip A #k is given by

Qk=~B’dx)”@~ =-qk+~+qk.
k

Hence
n

q/c= Q/c+ qk+l= ~ Q,+qn+l (k=l,..., n). (8)
,ak

Finally, relations (5) and (6) are the boundary conditions

on the insulating lines and relations (7) are the boundary

conditions on the conducting strips.

III. DETERMINATION OF MAXWELL’S

CAPACITANCE MATRIX

In order to solve the above settled boundary value

problem, we conformably transform the domain filled by

the two dielectric materials into a canonic domain. The

upper region may be conformably mapped onto the upper

complex half-plane Im { Z } >0. (If the studied domain is

actually a rectangular one, as in Fig. 1, the mapping

function z = w-1(Z) is given by the Schwarz–Christoffel

formula and will be expressed by incomplete elliptical

functions of the first kind.) Let (– m, bO)U ( a. + ~, CO) be

the image of the upper side of the shielded box and the

segment ( ak, bk) the image of the strip AkB~ (k =

1,2,..., n). By symmetry reasons the lower region of the

domain in Fig. 1 will be conformably mapped on the lower

half-plane (Fig. 2).

Thus the method can be used for more general geome-

tries of the two dielectric media. The only restriction is the

symmetry of the two dielectric domains with respect to the

electrode line. In the sequel the actual shape of the shielded

boundary is involved only through the abscissas ak, bk on

the real axis Y = O in the Z plane, corresponding to the

pOintS Ak, Bk.

By conformal mapping the complex potentials f(l)(z),

f “)(z) become two homomorphic functions in, respectively,

the upper and lower half-planes .F(l)( Z), 1’(2)( Z).

We can write

(-1)’ ‘mfl~.d~ (j=l ‘2) (9)
~(~)(z) . . —

Ir J–~t--z

where the real function p(t) must be determined by taking

into account the boundary conditions:

*(l)(X,O) = W(’)(x,o)

-{

o for X(–eo, bO)u(an+l, co)—
Vk for X=l[ak, bk), (k=l,..., n)

(lo)

and

C1.’CD(l)(X, O)– C2.1D(2)(X,0) = qk forx=(bk, ak+l)

k= O,l,..., n.*Q)(x,o) = W(’)(x,o),

(11)

The values of functions F’(l)(Z) and 1’(2)(Z) on the real

axis can be obtained by using the Plemelj relations [8]:

F(J)(X) = @( J)(X,O)+ @)(X,O)

(-l)J ‘+~ ~(t) d~ (j=l ‘2)

f
=ip(x)– — —

–~, t–x
>

T

(12)

where J‘ stands for the Cauchy principal value of the

integral.

Relations (9)–(11) give

p(x)=o

P(X) ‘Vk

The first two

function I-L(X)

for X~(–co, bO)U(a.+l, co)

for X=(ak, bk), k=l,..., n

61+62 +m ~(l)

J
‘– dt = qk

‘rr –~ t—x

for X=( bk, ak+l), k= 0,1, ”””, n. (13)

relations (13) determine the values of the

on the electrodes; the last relation (13)

gives the equation of the problem

-f(x), X~(bk, ak.+l), k= 0,1, ”””, n. (14)

In order to solve the singular integral equation (14) let

us consider the complex variable function

F(Z) =O(X, Y)+ ZW(X, Y) := ~:o:~a’+’mdt.
J t–z
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This is a homomorphic function in the upper half-plane. By

using the Plemelj relations we get

a?(x,o)=o for X=(–m, bO)U(a~, b~)U(a.+l, @)

Y(x,o)=–f(x) for Xe(b~, a~+l), k= O,l,. ... n.

Thus, the function F(Z) is the solution of a Volterra

boundary value problem [8], [9], [15]. Finally, the existence

of a bounded solution of the integral equation is condi-

tioned by compatibility conditions [9]:

In the case of (14) these conditions become

~go& ~;+’&dt-,$1qy’
‘1–l

“ ,:o:~k+’(’L’) @(J dt=O, 1=1,2,..., n

(16)

where
n+l

P(Z)= J~l(Z-a,). (Z-b,).

If we substitute q~ given by relation (8) into formula

(16), we obtain

~k ‘[-1

—d’ =0. (17)+ ‘k~l ‘k~, ~

Finally, the conditions for the existence of bounded

solutions of (14) become

n n

~ Nuc’Qk= (cl+ 62)k;1Mlk”v’, 1=1>

k=l

, n (18)

where we use
[1

A/k= (-l)kj””i~ “

/1

B,k= (-l)k+l~:k+l ~ d’

k–l.
M,k = A[k; Nlk = ~ B[l , 1=1,. ... n. (19)

~=o

Relation (18) gives the Maxwell capacitance matrix C:

C=(61+(2)N-I.M (20)

where the matrices &l, N are defined by relation (19).

Let us denote now by C~O~ the Maxwell capacitance

matrix corresponding to the homogeneous dielectric

medium (cl = c~ = co). Relations (20) give

(20’)

Therefore, in order to obtain the Maxwell capacitance

matrix of a multiconductor system in a stratified dielectric

(as represented in Fig. 1), it is necessary to know only the

Maxwell capacitance matrix ChO~ of the same multicon-

ductor structure in free space.

In this way we obtained an analytical solution for the

Maxwell capacitance matrix of the considered structure in

terms of hyperelliptic integrals depending on the structure

geometry only by means of constants al,. “ “, a.+ ~ and

b , bn~l.. . . These relations are similar to those char-

a~terizing the impedance matrix of a resistive distributed

structure [9].

IV. APPLICATIONS

Let us now apply the above method to some actual

structures. We consider two kinds of problems, the first

consisting of simple structures with one or two coupled

striplines. In this case relations (20) give analytical for-

mulas for the capacitances in terms of elliptical functions.

The other type of application concerns the general case of

multiconductor coupled structures for which simple ana-

lytical expressions are no longer available. Accordingly the

determination of the capacitance matrix requires the use of

the general formula (20).

In most applications the domains of interest are the

rectangular box and the domain between two parallel

ground planes. If the dielectric media fill the rectangle

B n+l<x<An+l~ – h < y < h, the conformal mapping

function is obtained by means of elliptical functions. The

abscissas a k, b~ of the points on the X axis corresponding

to the electrode extremities are obtained in terms of Jacobi’s

sn function

X=sn(x. K/L, k) (21)

where the modulus k is the solution of the equation

K(k)/K(k’) = L/h, k’=~~. (22)

Here K(k) is the complete elliptical integral of the first

kind.

As the lateral sides of the rectangle are approaching

infinity (L ~ co) the domain will tend to the strip – k <

y < h and the abscissas Uk, b~ will be given by the formula

X= tanh (rx/(2h)) (23)

in terms of the x coordinates of the corresponding points

in the physical plane.

A. Single Stripline in a Shielded Box

In this case the conformal mapping provides four points
. .

on the real axis (Fig. 3), the abscissas al, bl, a2, zb being

determined by relations (21) in terms of L, h, w, and d.

Relation (20) gives

C/(Cl + tz) = MJNII (24)

where C stands for the total capacitance of the microstrip

and M1l, IVl ~ are the integrals given by relations (19). In

the case of a single stripline these integrals can be ex-

pressed in terms of complete elliptical integrals of the first
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Fig. 3. The geometry of (a) the single stripline and @) the image in the (b)

Z plane. Fig. 4. The geometry of (a) the shielded couple-strip and (b) the image
in the Z plane.

kind:

C/(c,+ 62)= K(s)/K(s’). (25) ~hi~$&~:metriCal, Coupled Striplines Inside a

Here the modulus s is related to the above-mentioned

abscissas by the relation

‘=R3ZT “=- ‘2’)
The result given in relations (25) and (26) holds for any

stripline-like structure shielded in a box.

B. Single Stripline Between Two Parallel Ground Planes

If the length L of the shielding box in Fig. 3(a) becomes

infinite, relation (23) will be appropriate and will give

b,= – al = tanh(7rw/(4h)) az=–bo=l. (27)

If the configuration is symmetrical with respect to a

vertical axis (Fig. 4), the capacitances of the system can

also be expressed by means of the complete elliptical

integrals. By symmetry, the abscissas of the six points of

interest are + a, + b, A c, where the constants a, b, c are

obtained by using the geometrical dimensions L, h, w, d in

relations (21) and (22). Relations (18) now give

N1l(Q1– Q2) = (C1+C2)M11(V1–V2)

N21(Q1+ Q2) = (q+ C2)Ji421(V1+V2).(30)

Consider two particular propagation modes: even (VI =

Vz = V) and odd (Vl = – Vz = V’). The capacitances corre-

sponding to these two modes are given by relation (30):

Relation (26) now becomes
ceven/(cl + E2) = M~~\N~~ ccdd\(E1 + C2) = M~~/N~~.

s = 2/tanh(~w/(4h)) /[1 + tanh(fiW/(4h))j. (28) (31)

By using certain relationships between the complete ellipti-

cal integrals of the first kind [10], formula (25) can be

written as

c/(61 +<2)=2K(k)/K(k’), k = tanh(~w/(4h)).

(29)

Formula (29) was given previously by Cohn [11]. It is used

in applications in the form

2.” K(k’)

‘“=~~

where ZOU= p” /<0 = 376.7 i?i is the characteristic imped-

ance of free space and c.ff = (c ~+ c* )/2 is the effective

relative dielectric constant.

The integrals J411,. “ “, Nzl can again be expressed as com-

plete elliptical integrals of the first kind. We obtain

c even K(p)

[

b:!_az
— .— p= ——
e1+c2 K(p’) ‘

Pf={g
c2!—a2 ‘

(32)

and

c odd K(s)

r

c2(b2–a2)
— . —. s=- S’=m.
61+62 K(s’) ‘ bz(cz–az) ‘

(33)

The two relations (32) and (33) give the capacitance of the

symmetrical two-conductor complete shielded coupler.
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Fig. 5. The nonsymmetncally coupled transmission lines.

D. Two Symmetrical Coupled Striplines Between Two

Parallel Ground Planes

When the shielding box has no lateral walls (L ~ co),

formula (23) gives

a = tanh (md/(4k)) b=tanh(n(d +2w)/(4h))

C=l (34)

and therefore relations (32) become

c even 2K(ke)
—. .
61+(:* K(k:) ‘

k=tanh(~)tanh(~ (~)). (35)

We have also

kO=(tanh(~))/(tanh(~ ~)). (36)

Relations (35) and (36) were also obtained by another

method by Cohn [12]. They are used in practice for the

even and odd characteristic impedances:

K(k:)
z— —— ‘(k:) (37)

‘even= ~ 4K(k,) ‘odd- : 4K(kO)

where ZOO and c,ff are the same as above.

E. Two Coupled Striplines in a Shielded Box

If the symmetry of the two coupled striplines is given

up, no analytical formulas in terms of elliptical functions

are available. IKowever, the capacitance matrix can still be

expressed by means of the hyperelliptical integrals (19).

These can be computed by using numerical methods. To

check the formulas (20) we computed the solution for

W1/W2=l, - . .,10 and d/h=l,. . ., IO(Fig. 5).

In the case where c1 = (z, the values obtained agree with

those obtained by Linner [13] by a method working only

for homogeneous dielectric media. Some of the results thus

obtained were communicated in [14].

F. Multiconductor Structures in a Shielded Box

This is a general case which can be solved by the method

developed here. The abscissas a~, b~ are determined by

relations (21) and (22) (in the case of the coupled striplines

between ground planes we shall use relation (23)). The

I

m
0-

–7 -5 -1 1 !57

-L –2 24
m~.

t

q=.~ I b5=-q= 0,97~01 q =-kq=o ‘X7152

b4=-a2=0 6’50134 ~=-b2=0 556893 b3= -a3 = O 304216

[fl/E = [55/f=2 6?lft3 [22/E =[44/f= 329387

C33/{ ❑ 329609 C12/t=C45/ f=-1.C0608

C23/E=C34/E=0 97638 C13/E= C5/E =-o oT942

CIL/t Z[25 /E. O 0117L C24/t =-0 07512

c15/E=-o 00197 Cl, =c,,

Fig. 6. The geometry of the multiconductor stripline considered in

Section IV-F and numerical results.

Maxwellian capacitance matrix is expressed by formula

(20), providing an analytical (exact) solution of the prob-

lem. Further, the estimation of integrals can be given only

by numerical methods.

In order to estimate the accuracy of the method, we

considered the case of a multistrip structure with a homo-

geneous dielectric medium between two parallel ground

planes (Fig. 6). This case was studied by Kammler [5]. In

Fig. 6 we also give the abscissas a~, b~ and the numerical

results obtained for Maxwell’s capacitance matrix.

Notice that the results thus obtained are identical within

the first five digits with the numerical results given in [5].

V. CONCLUSIONS

The new method offered by this paper is based on

conformal mapping and on singular integral equations

theory. The use of conformal mapping permits its applica-

tion to lines having the two dielectric media only if the

media have equal heights.

This method provides an analytical expression for

Maxwell’s capacitance matrix in terms of some hyperel-

liptic integrals. The influence of the structure geometry on

these formulas is expressed only by means of the images of

the ends of the conducting strips by conformal mapping.

The method is general, applying to structures with an

arbitrary number of conducting strips with arbitrary widths

and spacing placed in an inhomogeneous dielectric

medium. Moreover, relation (20’ ) expresses the capaci-

tance of the multistrip system in a stratified dielectric by

means of the Maxwell capacitance matrix of the same

system placed in free space.
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