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An Analytical Solution for the Coupled
Stripline-Like Microstrip Line Problem

DOREL HOMENTCOVSCHI, ANTON MANOLESCU, ANCA MANUELA MANOLESCU.
AND LIVIU KREINDLER

Abstract — An analytical method for determining the Maxwell’s capaci-
tance matrix of multiconductor coupled stripline-like microstrip lines in an
inhomogeneous medium is presented. The method is based on conformal
mapping and the theory of singular integral equations.

I. INTRODUCTION

ECENTLY the study of multiconductor coupled

stripline-like microstrip lines has attracted consider-
able interest due to the favorable properties of these lines
for developing new microwave integrated circuits such as
directional couplers and parallel coupled filters. In con-
trast to the so-called microstrip line classical half-shielded
structure, the full-shielded structure referred to as strip-
line-like microstrip [1] offers the advantage of having the
mode velocities independent of the strip widths and spac-
ing, and as a consequence a very good directivity and
well-defined electrical behavior.

For multiconductor coupled structures with very tight
coupling (interdigitated directional couplers, high-order
parallel coupled line filters) an accurate calculation method
is required in order to estimate the influence of all the
conducting strips. A number of methods to perform this
analysis are currently used; all of them solve the Laplace
equation for the bidimensional electrostatic equivalent
problem for low-order, quasi-TEM modes. One can men-
tion several commonly used methods, such as conformal
mapping for simple symmetrical cases [2], numerical meth-
ods based on lattice approximations [3], variational meth-
ods [4], and methods based on solving the integral equa-
tions derived from Green’s functions [S]-[7]. Although
some of the numerical methods are quite general, none of
the above can be considered suitable for analysis and
especially for synthesis of all the high-performance struc-
tures.

The present paper presents a new analytical method for
determining Maxwell’s capacitance matrix for multicon-
ductor stripline-like microstrips with coupled conductors
with arbitrary widths and spacings and inhomogeneous
media. It appears that the more general case of unsymmet-
rical configurations cannot be solved by a similar method.
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II. Basic CONFIGURATION

The multiconductor system to be analyzed consists of n
zero-thickness conducting strips A4, B,, with arbitrary
widths and spacings, located on a dielectric substrate of
thickness /. The system is fully shielded by ground planes
on all sides, as shown in Fig. 1, and is subject to the
constraint that the shield spacing / equals the substrate
thickness 4. However the relative dielectric constants e,
and e, corresponding to the upper and lower dielectric
media may be different.

The electrostatic field E(E,, E,) in the two dielectric
media inside the shielded box can be expressed by means
of electrostatic potentials as

ED(x,y)=— 0y /dx
E(x,y)=~08¢"/dy, (1)

As YYU)(x, y) are harmonic functions, we can introduce
the harmonic conjugate functions ¢"(x, y)—the field
functions. Therefore, the complex potential functions

fO2) =P (x, p)+i-9yP(x,v), j=12 (2)
are holomorphic in the complex variable z = x + i+ y inside
the two dielectric media.

On the shielded box the potential functions must vanish,
ie.,

j=1.2.

YO (x,y) =0
$@(x, ) =0 (3)

On the other hand on the symmetry axis we must have
the physical conditions

D,(x,+0)~D,(x.-0) =p(x)
E(x,+0)—E (x,-0)=0

for y>0

for y <0, on the box.

(4a)
(4b)

where p(x) is the surface density of the electrical charges
and D(D,, D)) is the electrical induction.

On the insulating segments B,A4,., we must have
p(x) = 0; by using the field function the relation (4a) gives

- fl"P(D(va)"‘ fz"P(z)(Xﬁ) =~ 4
x€B A, ,, k=1,--,n

(5)

where ¢, are unknown constants. Relation (4b) gives also

$B(x.0) =@ (x.0). (6)
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Fig. 1. Full-shielded multiconductor coupled striplines.
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Fig. 2. The canonic domain obtained by conformal mapping of the
domain in Fig. 1.

On the conducting strip 4, B, we must have
¥ (x,0) =¥ (x,0) =V,
k=1,---,n, x€A4,B, (7)
where V, is the potential of the kth electrode. Relation
(4a) determines in this case the function p(x). The total
charge Q, on the strip 4, B, is given by
B
Qr= kp(x)-c_ix =

Ay

~ 1t G-

Hence

=0t g™ Z Q t qui1 (k= ,n). (8)

Finally, relations (5) and (6) are the boundary conditions
on the insulating lines and relations (7) are the boundary
conditions on the conducting strips.

III. DETERMINATION OF MAXWELL'’S
CAPACITANCE MATRIX

In order to solve the above settled boundary value
problem, we conformally transform the domain filled by
the two dielectric materials into a canonic domain. The
upper region may be conformally mapped onto the upper
complex half-plane Im{Z} > 0. (If the studied domain is
actually a rectangular one, as in Fig. 1, the mapping
function z =w~Y(Z) is given by the Schwarz—Christoffel
formula and will be expressed by incomplete elliptical
functions of the first kind.) Let (— o0, by)U(a,,1,%0) be
the image of the upper side of the shielded box and the
segment (a,,b,) the image of the strip 4, B, (k=
1,2,---, n). By symmetry reasons the lower region of the
domain in Fig. 1 will be conformally mapped on the lower
half-plane (Fig. 2).

Thus the method can be used for more general geome-
tries of the two dielectric media. The only restriction is the
symmetry of the two dielectric domains with respect to the
electrode line. In the sequel the actual shape of the shielded
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boundary is involved only through the abscissas a,, b, on
the real axis Y =0 in the Z plane, corresponding to the
points A,, B,.

By conformal mapping the complex potentials f(z),
f@(z) become two holomorphic functions in, respectively,
the upper and lower half-planes FV(Z), F®(Z).

We can write

F(/)(Z) = —

(—l)jf_‘—w:j‘_(_t;dt (J=1,2) (9)

where the real function u(r) must be determined by taking
into account the boundary conditions:
YO(X,0) =¥?(X,0)
0 for X(—o00,by)U(a,,,0)
Z{Vk for Xe(a,,b,),(k=1,---,n)
(10)

T — 0

and
e @V(X,0) - ¢, @P(X,0) = g,
YO( X,0) = ¥O( X,0),

for Xe(b,,a,.,)
k=0,1,---,n.
(11)

The values of functions F&(Z) and F@(Z) on the real
axis can be obtained by using the Plemelj relations {8]:

F(J)(X) = (I)(j)(X,O)-i- i‘I’(J)(X,O)
(——1)1 'L o u(t)
_____f Rk

=ip(X)- p_—
— o

it (j=1,2)

(12)

where [’ stands for the Cauchy principal value of the
integral.
Relations (9)-(11) give

i

p(X)=0 for X € (—o0,by)U(a, ,,0)
p(X)=V, forXe(a,b,), k=1,--,n
el+ezf+oo u(l) di =
T —o X

for X € (by,a,,,), k=01,---,n. (13)

The first two relations (13) determine the values of the
function p(X) on the electrodes; the last relation (13)
gives the equation of the problem

i fa, M)

= 0T l‘—-X
71 V
-y —f — dt
€1+e2 21T Ve -X
Ef(X)’ E(bk’ah—l)’k—__o’la“"n' (14)

In order to solve the singular integral equation (14) let

us consider the complex variable function
e

F(Z)=®(X,Y)+i¥(X,Y) = f ‘“( )

Jj= 0 in b
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This is a holomorphic function in the upper half-plane. By

using the Plemelj relations we get

®(X,00=0 for Xe(—o00,by)U(a,, b, )U(a,,,, o)

¥(X,0)=-f(X) for Xe(b,,a,,1), k=0,1,---,n
Thus, the function F(Z) is the solution of a Volterra

boundary value problem [8], [9], [15]. Finally, the existence

of a bounded solution of the integral equation is condi-
tioned by compatibility conditions [9]:

i/a’“&)—ﬂ—_l—dt—O (1=1,---,n). (15)
j=o”s  (P(1) T
In the case of (14) these conditions become
n 1 n
Ayt
ZV dr’
kzo‘1+‘2‘[ vP(t -1 f
n P
Y = =0, [=12,--,n
k=0w'/[;k (1" =1)yP(2)
(16)
where
n+1
P(Z)= ]—[1(Z—aj)-(Z-—bj).
J=

If we substitute ¢, given by relation (8) into formula
(16), we obtain

> 0

€ +e, k=1

1 g 1T
P

—HkZlef

-1

/P()

Finally, the conditions for the existence of bounded
solutions of (14) become

dr=0. (17)

Zle'Qk=(51+fz) ZMlk'Vk> [=1,--+,n (18)
k=1 k=1
where we use
-1
b, !
4, =(-1)* dt
fak 1401
By= (- [ ,
=(- t
" b VP(2)
k-1
M, =A,; N,= ) B, I=1,---,n. (19)
=0

Relation (18) gives the Maxwell capacitance matrix C:
C=(e+e;,)) N M (20)

where the matrices M, N are defined by relation (19).

Let us denote now by C, . the Maxwell capacitance
matrix corresponding to the homogeneous dielectric
medium (€, = €, = ¢,). Relations (20) give

€ te€,

2¢,

= (207)

hom*
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Therefore, in order to obtain the Maxwell capacitance
matrix of a multiconductor system in a stratified dielectric
(as represented in Fig. 1), it is necessary to know only the
Maxwell capacitance matrix C,,, of the same multicon-

- ductor structure in free space.

In this way we obtained an analytical solution for the
Maxwell capacitance matrix of the considered structure in
terms of hyperelliptic integrals depending on the structure
geometry only by means of constants a;,--+,a,,; and
by.--+,b,,,- These relations are similar to those char-
acterizing the impedance matrix of a resistive distributed
structure [9].

IV. APPLICATIONS

Let us now apply the above method to some actual
structures. We consider two kinds of problems, the first
consisting of simple structures with one or two coupled
striplines. In this case relations (20) give analytical for-
mulas for the capacitances in terms of elliptical functions.
The other type of application concerns the general case of
multiconductor coupled structures for which simple ana-
lytical expressions are no longer available. Accordingly the
determination of the capacitance matrix requires the use of
the general formula (20).

In most applications the domains of interest are the
rectangular box and the domain between two parallel
ground planes. If the dielectric media fill the rectangle
B,,1<x<A4,,;,~h<y<h, the conformal mapping
function is obtained by means of elliptical functions. The
abscissas a,, b, of the points on the X axis corresponding
to the electrode extremities are obtained in terms of Jacobi’s
sn function

X=sn(x-K/L k) (21)
where the modulus & is the solution of the equation
K(k)/K(k')=L/h, k'=V1-k?. (22)

Here K(k) is the complete elliptical integral of the first
kind.

As the lateral sides of the rectangle are approaching
infinity (L —> c0) the domain will tend to the strip —h <
»y < h and the abscissas a,, b, will be given by the formula

X = tanh (7x/(21)) (23)

in terms of the x coordinates of the corresponding points
in the physical plane.

A. Single Stripline in a Shielded Box

In this case the conformal mapping provides four points
on the real axis (Fig. 3), the abscissas ay, by, a,, b, being
determined by relations (21) in terms of L, 4, w, and d.
Relation (20) gives

C/(ey+e) =M, /Ny (24)
where C stands for the total capacitance of the microstrip
and M,;, N, are the integrals given by relations (19). In

the case of a single stripline these integrals can be ex-
pressed in terms of complete elliptical integrals of the first
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Fig. 3. The geometry of (a) the single stripline and (b) the image in the
Z plane.
kind:
C/(ey+¢€,) =K(s)/K(s"). (25)

Here the modulus s is related to the above-mentioned
abscissas by the relation

(by—a;)(a, - by) , 2
T (by—bo)(ay—ay)’ s=vy1-st. (26)

The result given in relations (25) and (26) holds for any
stripline-like structure shielded in a box.
B. Single Stripline Between Two Parallel Ground Planes
If the length L of the shielding box in Fig. 3(a) becomes
infinite, relation (23) will be appropriate and will give
b, = — a, = tanh(7w/(4h)) a,=—by=1. (27)

Relation (26) now becomes

s = 3,ftanh (7w,/(4h)) /[1+ tanh (7w/(4h))]. (28)

By using certain relationships between the complete ellipti-

cal integrals of the first kind [10}, formula (25) can be

written as

C/(e;+e,) =2K(k)/K(k’),  k=tanh(7w/(4h)).

(29)

Formula (29) was given previously by Cohn [11]. It is used

in applications in the form

ZOU K ( k ’)

Jear K(K)

where Z,, =/pq/€o = 376.7 Q is the characteristic imped-
ance of free space and e = (¢, +¢€,)/2 is the effective

Zy=

" relative dielectric constant.
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Fig. 4. The geometry of (a) the shieldec couple-strip and (b) the image
in the Z plane.

C. Two Symmetrical, Coupled Striplines Inside a
Shielded Box '

If the configuration is symmetrical with respect to a
vertical axis (Fig. 4), the capacitances of the system can
also be expressed by means of the complete elliptical
integrals. By symmetry, the abscissas of the six points of
interest are + a, + b, + ¢, where the constants a, b, ¢ are
obtained by using the geometrical dimensions L, #,w, d in
relations (21) and (22). Relations (18) now give

Ny(@:i—0y) = (e + )M, (V- V)
Ny (01 +0Q,) = (e + &) My (V1 + 7). (30)
Consider two particular propagation modes: even (V; =

V,=V) and odd (V, = — ¥, =V). The capacitances corre-
sponding to these two modes are given by relation (30):

Coven/(€1+€) =My /Ny, Coga/(e1+€;) =My /Ny

(31)

The integrals M,,,- - -, N, can again be expressed as com-
plete elliptical integrals of the first kind. We obtain

Ceven K(p) b:! - a2
p=\ gz M=

el+52=K(p’)’ a
(32)

and

Con K9 - JAZD) i

€1""2=}?;"') b_z(hc2—a2) ’
(33)

The two relations (32) and (33) give the capacitance of the
symmetrical two-conductor complete shielded coupler.
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Fig. 5. The nonsymmetrically coupled transmission lines.

D. Two Symmetrical Coupled Striplines Between Two
Parallel Ground Planes

When the shielding box has no lateral walls (L — c0),
formula (23) gives

a = tanh (=d /(4h)) b=tanh(7(d +2w)/(4h))
c=1 (34)
and therefore relations (32) become

Coen _ 2K(k,)

even

e+e, K(k2)’
ke=tanh(%)-tanh(w(w—+d)). (35)

4\ h

We have also

Codd _ K(ko)
o+e,  K(kj)’

k0=(tanh(%))/(tanh(%-wzd). (36)

Relations (35) and (36) were also obtained by another
method by Cohn [12]. They are used in practice for the
even and odd characteristic impedances:

7 ZOv K(ké) 7 ZOU K(kz/z)
Oeven—\/'e_e_f; 4K(ke) OOdd_\/a 4K(k0)

where Z,, and e are the same as above.

(37)

E. Two Coupled Striplines in a Shielded Box

If the symmetry of the two coupled striplines is given
up, no analytical formulas in terms of elliptical functions
are available. However, the capacitance matrix can still be
expressed by means of the hyperelliptical integrals (19).
These can be computed by using numerical methods. To
check the formulas (20) we computed the solution for
w,/W,=1,---,10 and d/h=1,---,10 (Fig. 5).

In the case where ¢; = €,, the values obtained agree with
those obtained by Linner [13] by a method working only
for homogeneous dielectric media. Some of the results thus
obtained were communicated in [14].

F. Multiconductor Structures in a Shielded Box

This is a general case which can be solved by the method
developed here. The abscissas a,, b, are determined by
relations (21) and (22) (in the case of the coupled striplines
between ground planes we shall use relation (23)). The
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Fig. 6. The geometry of the multiconductor stripline considered in
Section IV-F and numerical results.

Maxwellian capacitance matrix is expressed by formula
(20), providing an analytical (exact) solution of the prob-
lem. Further, the estimation of integrals can be given only
by numerical methods.

In order to estimate the accuracy of the method, we
considered the case of a multistrip structure with a homo-
geneous dielectric medium between two parallel ground
planes (Fig. 6). This case was studied by Kammler [5]. In
Fig. 6 we also give the abscissas a,, b, and the numerical
results obtained for Maxwell’s capacitance matrix.

Notice that the results thus obtained are identical within
the first five digits with the numerical results given in [5].

V. CONCLUSIONS

The new method offered by this paper is based on
conformal mapping and on singular integral equations
theory. The use of conformal mapping permits its applica-
tion to lines having the two dielectric media only if the
media have equal heights.

This method provides an analytical expression for
Maxwell’s capacitance matrix in terms of some hyperel-
liptic integrals. The influence of the structure geometry on
these formulas is expressed only by means of the images of
the ends of the conducting strips by conformal mapping.

The method is general, applying to structures with an
arbitrary number of conducting strips with arbitrary widths
and spacing placed in an inhomogeneous dielectric
medium. Moreover, relation (20’) expresses the capaci-
tance of the multistrip system in a stratified dielectric by
means of the Maxwell capacitance matrix of the same
system placed in free space.
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